\(\int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [982]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 230 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 (5 a A+3 b B+3 a C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 (5 a A+3 b B+3 a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 (b B+a C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \]

[Out]

2/21*(7*A*b+7*B*a+5*C*b)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*(B*b+C*a)*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/7*b*C*sec
(d*x+c)^(7/2)*sin(d*x+c)/d+2/5*(5*A*a+3*B*b+3*C*a)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2/5*(5*A*a+3*B*b+3*C*a)*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(
1/2)/d+2/21*(7*A*b+7*B*a+5*C*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2
^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4161, 4132, 3853, 3856, 2720, 4131, 2719} \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (7 a B+7 A b+5 b C)}{21 d}+\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)} (5 a A+3 a C+3 b B)}{5 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (7 a B+7 A b+5 b C)}{21 d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (5 a A+3 a C+3 b B)}{5 d}+\frac {2 (a C+b B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 b C \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{7 d} \]

[In]

Int[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*(5*a*A + 3*b*B + 3*a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(7*A*b
 + 7*a*B + 5*b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*(5*a*A + 3*b*B
+ 3*a*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*(7*A*b + 7*a*B + 5*b*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/
(21*d) + (2*(b*B + a*C)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + (2*b*C*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4161

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f
*x])^n/(f*(n + 2))), x] + Dist[1/(n + 2), Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1
) + A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C
, n}, x] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {7 a A}{2}+\frac {1}{2} (7 A b+7 a B+5 b C) \sec (c+d x)+\frac {7}{2} (b B+a C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {7 a A}{2}+\frac {7}{2} (b B+a C) \sec ^2(c+d x)\right ) \, dx+\frac {1}{7} (7 A b+7 a B+5 b C) \int \sec ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 (7 A b+7 a B+5 b C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 (b B+a C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (5 a A+3 b B+3 a C) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{21} (7 A b+7 a B+5 b C) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 (5 a A+3 b B+3 a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 (b B+a C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} (-5 a A-3 b B-3 a C) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{21} \left ((7 A b+7 a B+5 b C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 (7 A b+7 a B+5 b C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 (5 a A+3 b B+3 a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 (b B+a C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {1}{5} \left ((-5 a A-3 b B-3 a C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 (5 a A+3 b B+3 a C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 (5 a A+3 b B+3 a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (7 A b+7 a B+5 b C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 (b B+a C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 b C \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.26 (sec) , antiderivative size = 545, normalized size of antiderivative = 2.37 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 e^{-i d x} \cos ^3(c+d x) \csc (c) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (7 \sqrt {2} (5 a A+3 b B+3 a C) e^{2 i d x} \left (-1+e^{2 i c}\right ) \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )-\frac {e^{-i (c-d x)} \left (-1+e^{2 i c}\right ) \left (35 A \left (1+e^{2 i (c+d x)}\right )^2 \left (b \left (-1+e^{2 i (c+d x)}\right )+3 a e^{i (c+d x)} \left (1+e^{2 i (c+d x)}\right )\right )+7 a \left (1+e^{2 i (c+d x)}\right ) \left (5 B \left (-1+e^{4 i (c+d x)}\right )+3 C e^{i (c+d x)} \left (1+8 e^{2 i (c+d x)}+3 e^{4 i (c+d x)}\right )\right )+b \left (21 B e^{i (c+d x)} \left (1+9 e^{2 i (c+d x)}+11 e^{4 i (c+d x)}+3 e^{6 i (c+d x)}\right )+5 C \left (-5-17 e^{2 i (c+d x)}+17 e^{4 i (c+d x)}+5 e^{6 i (c+d x)}\right )\right )\right ) \sqrt {\sec (c+d x)}}{\left (1+e^{2 i (c+d x)}\right )^3}+10 (7 A b+7 a B+5 b C) e^{i d x} \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)} \sin (c)\right )}{105 d (b+a \cos (c+d x)) (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x)))} \]

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*Cos[c + d*x]^3*Csc[c]*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(7*Sqrt[2]*(5*a*A + 3*b*
B + 3*a*C)*E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*
(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] - ((-1 + E^((2*I)*c))*(35*A*(1 + E^((2*I)*(
c + d*x)))^2*(b*(-1 + E^((2*I)*(c + d*x))) + 3*a*E^(I*(c + d*x))*(1 + E^((2*I)*(c + d*x)))) + 7*a*(1 + E^((2*I
)*(c + d*x)))*(5*B*(-1 + E^((4*I)*(c + d*x))) + 3*C*E^(I*(c + d*x))*(1 + 8*E^((2*I)*(c + d*x)) + 3*E^((4*I)*(c
 + d*x)))) + b*(21*B*E^(I*(c + d*x))*(1 + 9*E^((2*I)*(c + d*x)) + 11*E^((4*I)*(c + d*x)) + 3*E^((6*I)*(c + d*x
))) + 5*C*(-5 - 17*E^((2*I)*(c + d*x)) + 17*E^((4*I)*(c + d*x)) + 5*E^((6*I)*(c + d*x)))))*Sqrt[Sec[c + d*x]])
/(E^(I*(c - d*x))*(1 + E^((2*I)*(c + d*x)))^3) + 10*(7*A*b + 7*a*B + 5*b*C)*E^(I*d*x)*Sqrt[Cos[c + d*x]]*Ellip
ticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]*Sin[c]))/(105*d*E^(I*d*x)*(b + a*Cos[c + d*x])*(A + 2*C + 2*B*Cos[c +
d*x] + A*Cos[2*(c + d*x)]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(254)=508\).

Time = 6.66 (sec) , antiderivative size = 824, normalized size of antiderivative = 3.58

method result size
default \(\text {Expression too large to display}\) \(824\)
parts \(\text {Expression too large to display}\) \(1012\)

[In]

int(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+
2*a*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*(sin(1/2*d*x+1/2*c)^2)^(1/2))+2*(A*b+B*a)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2/5*(B*b+C*a)/sin(1/2
*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2*d*x+1/2*c)
^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2
*c)^2*cos(1/2*d*x+1/2*c)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x
+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*
c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.25 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {5 \, \sqrt {2} {\left (7 i \, B a + i \, {\left (7 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-7 i \, B a - i \, {\left (7 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (i \, {\left (5 \, A + 3 \, C\right )} a + 3 i \, B b\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-i \, {\left (5 \, A + 3 \, C\right )} a - 3 i \, B b\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (21 \, {\left ({\left (5 \, A + 3 \, C\right )} a + 3 \, B b\right )} \cos \left (d x + c\right )^{3} + 5 \, {\left (7 \, B a + {\left (7 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{2} + 15 \, C b + 21 \, {\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(7*I*B*a + I*(7*A + 5*C)*b)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d
*x + c)) + 5*sqrt(2)*(-7*I*B*a - I*(7*A + 5*C)*b)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*s
in(d*x + c)) + 21*sqrt(2)*(I*(5*A + 3*C)*a + 3*I*B*b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInvers
e(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(-I*(5*A + 3*C)*a - 3*I*B*b)*cos(d*x + c)^3*weierstrassZ
eta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(21*((5*A + 3*C)*a + 3*B*b)*cos(d*x
+ c)^3 + 5*(7*B*a + (7*A + 5*C)*b)*cos(d*x + c)^2 + 15*C*b + 21*(C*a + B*b)*cos(d*x + c))*sin(d*x + c)/sqrt(co
s(d*x + c)))/(d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int((a + b/cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int((a + b/cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)